MATH 306 Workshop

1.	Define what it means for a list of vectors in V to be linearly independent.
2.	Define what it means for a list of vectors in V to be a basis of V.
3.	State the Fundamental Theorem of Linear Maps.
4.	Let $T \in \mathcal{L}(V)$, define what is means for a subspace U of V to be invariant under T.
5.	State the theorem about diagonalizability .

- 6. True or False (if false, explain or give a counterexample):
 - a. $W = \{(x, 1, x) : x \in F\}$ is a subspace of F^3 .
 - b. (1, 0, 0), (0, 2, 0), (0, 0, 3), (3, 4, 8) spans \mathbb{R}^3 .
 - c. Dim $\mathbf{F}^{3, 4} = 7$
 - d. U and W are subspaces of \mathbf{F}^{10} with $\dim(\mathbf{U}) = 8$, $\dim(\mathbf{W}) = 6$, and $\dim(\mathbf{U} \cap \mathbf{W}) = 2$
 - e. $T(x) = \sin(x)$ is a linear map from **R** to **R**.
 - f. If $T \in L(V, W)$ is both injective and surjective, then it is invertible.
 - g. Let $T \in L(V)$, null T is invariant under T

- h. Let $T \in L(V)$ where V is a finite-dimensional complex vector space. Given T has two eigenvalues: $\lambda = 1$ with corresponding eigenvector v_1 and $\lambda = 3$ with corresponding eigenvectors v_2 and v_3 . Then the trace of T is 4.
- i. Every operator T on a non-zero, complex vector space has an eigenvalue.
- j. Every operator T on a non-zero, finite-dimensional vector space has an eigenvalue.
- k. Suppose V is a finite-dimensional non-trivial complex vector space, then every operator in V has an upper-triangular matrix.

7. Suppose $T \in \mathcal{L}(V)$ and (T - 2I) * (T - 3I) * (T - 4I) = 0.

Suppose λ is an eigenvalue of T. Prove that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$.

8. Let $V = \mathbf{R}^{[0,1]}$, and let $U = \{f \in V : f(0.5) = 0\}$.

Prove or disprove that U is a subspace of V.

9. Prove that the set of all vectors (x_1, \ldots, x_n) in \mathbb{R}^n that satisfy $x_1 + \ldots + x_n = 0$ is a subspace of \mathbb{R}^n . And find a basis for this subspace.

10. Let U be the subspace of F⁵ defined by:

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{F}^5 \mid x_2 = x_1, x_3 = 2x_4 - 3x_5 \}$$

a. Find a basis for U and prove that your answer is a basis.

b. Extend the basis in part (a) to a basis of \mathbf{F}^5 .

c. Find a subspace W of \mathbf{F}^5 such that $\mathbf{F}^5 = U \oplus W$

11. Let T: $\mathbf{F}^2 \rightarrow \mathbf{F}^3$ be defined by $T(x_1, x_2) = (x_1 + x_2, x_1, 0)$. Show T is a linear map.

12. Let T: $\mathbf{F}^3 \to \mathbf{F}^2$ be defined by T(x, y, z) = (x - y, 2z). Find the null T and what is a basis for null T.

13. Let $V = F^{2,2}$. Define $T \in L(V)$ by

$$T\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right) = \left(\begin{array}{cc}d&-b\\0&a\end{array}\right)$$

Find all eigenvalues and eigenvectors of T.

14. Define $T \in L(\mathbb{C}^2)$ by T(z, w) = (4z + 3w, 3z + 4w). The vectors (1, 1) and (1, -1) are eigenvectors of T. Find all of the eigenvalues of T and explain why your answer is complete.

15. Let T be defined on a vector space of dimension 10 has eigenvalues 3, 9, and 11 and no others. If dim E(3,T) = 2, dim E(9,T) = 5, and dim E(11,T) = 2, is T diagonalizable?

16. Given λ is an eigenvalue of $T \in \mathcal{L}(V)$, prove that $T - \lambda I$ is not invertible.

17. Suppose $T \in \mathcal{L}(V)$ with $T^2 = I$ and -1 is not an eigenvalue of T. Prove that T is the identity map.

18. Given $det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 7$, calculate the following:

a.
$$det \begin{pmatrix} a & b & c \\ a & b & c \\ g & h & i \end{pmatrix} =$$

b.
$$det \begin{pmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{pmatrix} =$$

19. Given an operator on V is invertible, what can you say about its injectivity, surjectivity, and determinant?